
Use of the Slide Rule as
a Teaching Tool




1. Introduction 



In the days before
calculators and personal computers an engineer always had a slide rule
nearby. These days it is difficult to locate a slide rule outside of a
museum. I don't know how many of those who have used a slide rule ever
thought of it as an analog computer, but that is really what it
is. As
such, I think that it is an ideal tool for teaching the mathematical
concept of transformations. With the proper scales, a slide rule can be
used not only to multiply but to find the third side of a right
triangle and add velocities relativistically. In order to introduce the
concepts that will be
used, we will start with the simplest type of
slide rule - one that is made up of two ordinary rulers. 




2. Using Rulers for Addition 



Two rulers can be lined up as in the figure below to show that 5 + 3 =
8. Note that in order to do this it is not necessary to know how to add
or even to be able to count. All that is required is to line up the
start of the top ruler with the symbol "5" on the bottom ruler; locate
the symbol "3" on
the top ruler and the symbol "8" below it on the
bottom ruler.




For the purposes here I am going to define a slide rule as using two
copies of the same scale, with one scale moving relative to the other.
Actual slide rules may use two different scales, which could either be
stationary or mobile with respect to the other. 



3. Analog Computers 



An analog computer performs a calculation by transforming numbers into
physical quantities, combining these physical quantities and then
converting the result into the result of the calculation. The way in
which a slide rule is an analog computer should be clear - a numerical
computation
(in this case addition) is performed by changing numbers
into a physical representation (distances); the distances are added and
the resultant distance is reverse transformed into the result of the
numerical calculation. 



4. Mirror Worlds 




 
Figure 2 above shows diagrammatically what is happening. Imagine two
worlds, a number world X below the black horizontal line and a distance
world above it. In the number world 3 is added to 5 to get 8. The
arrows above "5" and "3" represent the transform of these numbers into
distances. The symbol "//" represents the operation of adding the two
distances to produce the distance to the right of the "//". The arrow
above the "8" represents the transform of that distance into the number
8. There are thus two ways to get to the "8". Symbolically, 5 + 3 = D-1(D(5)
//
D(3)). That is, adding 5 and 3 is the same as adding their distances
and then taking the inverse transform to convert the distance 8 into
the number 8. 



5. Translations

The addition slide rule was
compared above to a mirror. Perhaps a more apt metaphor would be a
translation.

Suppose you traveled back
in time to the days of the Roman Empire. You notice someone doing
arithmetic using Roman numerals and you want to verify your
understanding of this numeric representation. Let T be the
transformation from Arabic numerals to Roman numerals. According to
what you were taught T(5) = V, T(III) = 3 and T(8) = VIII.

You observe that this
particular person seems to be using ".." to stand for "+". You hand
over a sheet of paper with V .. III written on it. When the person
writes VIII on the paper this increases your confidence that the above
transformation is correct. You have established a degree of internal
consistency. We can think of addition as taking two input values to
produce an output value. Since the output is determined by the inputs,
for one process to be a translation of the other it is sufficient for
equivalent inputs to result in equivalent outputs. (5+3) is the output
of the Arabic
numeral arithmetic. T(5)..T(3) is the output of the Roman
numeral arithmetic. For the outputs to be equivalent we must have
T(5)..T(3) = T(5+3) . If we could prove that in general T(X)..T(Y) =
T(X+Y)then we could say that the one process is a translation of the
other.

For the addition slide rule
we have D(X) // D(Y) = D(X+Y) . The combining of distances is a
translation of the addition of numbers. It does not matter that numbers
and distances are different entities. Adding numbers is structually
equivalent to combining distances. The next section states
this in more
formal terms.

6. Isomorphisms 



Any invertible relationship of the form

T(x
& y) = T(x) % T(y)


is called an isomorphism (Greek for "same form"). 

The & and % stand for operators on the elements of the
appropriate domain. In the above example & = + and % = //.




The inverse transform T-1
provides a way of reversing the roles of the mirror domain and the
original domain or, alternatively, of reversing the direction of the
translation.



Let u=T(x), v = T(y).



Then x = T-1(u),
y = T-1(v).

Substituting in the above equation,


T(T-1(u)
& T-1(v))
= u % v.



Applying T-1
to both sides,

T-1(u
% v) = T-1(u)
& T-1(v).


In an isomorphism variables in one domain are related to each other
through & operator in exactly the same way as the transformed
variables relate to each other through the % operator. 



In particular, one operator will be commutative if and only if the
other is:



x & y = y & x if and only if
T(x) % T(y) = T(y) % T(x).




This is easy to show:

If y & x = x & y then

T(y) % T(x) = T(y & x) = T(x & y) = T(x) % T(y).




All operations for which there are slide rule scales are commutative
since adding distances is commutative. 



7. A Little Philosophy 



Equations used to express scientific laws are an expression of an
isomorphism between nature and mathematics. Analog computers are a
reversal of the usual computation. Ordinarily, the isomorphism is used
to determine a physical quantity by measuring the other physical
quantities in the
equation and then using the equation to solve for the
missing quantity. In an analog computer, a number is computed by
converting the other numbers in the equation into physical quantities
and then using the physical situation to determine the missing value. 



We use isomorphisms in our daily lives all the time. When we look in a
mirror or read a map we are using isomorphisms. Whenever we solve a
problem by an analogy to another problem there is an implied
isomorphism. 



In mathematics, isomorphisms are used to express relationships between
abstract mathematical objects. The slide rule can be used by the
teacher to both teach the concept of isomorphism and to unify, and thus
simplify, several different concepts by showing how they are examples
of
isomorphisms. 



I am going to present logarithms as an isomorphism between
multiplication and addition, without reference to exponents. If you
think that this presentation is unnatural, consider that this is the
point of view taken by the discoverer of logarithms, John Napier, in
the seventeenth century. He
was unaware of the connection between
logarithms and exponents until it was brought to his attention. Napier
was just looking for a simpler way of multiplying. 



8. Logarithms, Multiplication
and Composition

 The logarithmic function satisfies the relationship

log (x * y) = log(x) + log(y). 




 The log function is an isomorphism. It transforms a

multiplication problem into an addition problem. Since


addition of numbers is isomorphic to addition of 

distances, consider the effect of applying the distance


function D to both sides of the equation.

 


D(log(x*y)) = D( log(x) + log(y) ) = D( log(x)) // D(log(y) )

D(log(x*y)) = D(log(x)) // D(log(y))




It follows that the transform (D log) formed by composing

the D and log transforms is an isomorphism. The same


process could be used to show that in general the 

composition of two isomorphic transforms is an isomorphic transform -


 the mirroring of the mirroring of a domain is itself a 

mirroring of the domain; 


the translation of a translation is a translation of the original.



 The construction of a slide rule for multiplication

follows from the above equation. If the distance 


that a number is placed is equal to the log of the

number then the result is the standard slide rule.

Figure 3 shows how the slide rule is used to


multiply 10 and 1000.



Shortly after their discovery it was realized that logarithm functions
loga(x)
were the inverse of exponential functions ax.
For convenience, let us write the exponential function as EXP(X) and
the logaritm function as LOG(X) for some common base a.



Since LOG(X) is an isomorphism and EXP(X) is its inverse, then by what
was shown above we get:



EXP(X+Y) = EXP(X) * EXP(Y),

which is an expression of the law of exponents. 




9. Right Triangles and Parallel
Resistances



What made it possible to construct a slide rule for multiplication was
that the log function provides an isomorphism between multiplication
and addition. There are other isomorphisms to addition. Consider right
triangles. The length of the hypotenuse is given by:



c2
= a2
+ b2
.



If we let s(x) = x2
and define a & b as the length of the hypotenuse of a triangle
with sides of lengths a and b then s(a & b) = s(a) + s(b) and
we have our isomorphism. If a slide rule is constructed so that the
distance along the slide rule is equal to the square of the number then
the slide rule
can be used to find the third side of a right triangle
given the other two. 



Figure 4 shows such a slide rule set up for the familiar right triangle
with sides of 3, 4 and 5.




A
Right
Triangle Slide Rule 



 As another example consider the equivalent electrical
resistance
for
two resistors in parallel given by 1/r = 1/r1
+ 1/r2.
This can be computed using a slide rule with distances equal to the
reciprocal of the number. 

Here is a parallel resistor slide rule. 


A
parallel resistor slide rule.

Note that in this case the numbers decrease in going from left to
right. The left edge of
the slide rule is at the "i" on the left side, representing infinite
resistance.


10.  Relativistic
Velocity Addition



 When a car traveling with a velocity of u approaches a car
traveling with velocity v,
the velocity w with which they
pass each other is  very close to u+v.  This formua
is not
exact and for very high velocities will be in error.  The
proper
relationship between u, v and w satisfies the formula:

 (c+w)/(c-w) = (c+u)/(c-u) * (c+v)/ (c-v),  where c
is the
speed of light (about 186,000 miles per second). 



To avoid having to use the speed of light in our calculations we
can express all the velocities as fractions of the speed of light.
Dividing the numerator and denominator of all three terms by c gives : 


(1 + p )/ (1 - p ) = (1 + q )/ (1 - q ) * (1 + r )/ (1
- r ), where 

p = w/c, q=u/c and r = v/c. 



Applying in
succession the log and distance functions to both sides gives: 


 D (log ( (1 + p )/ (1 - p ) ) ) = 

D (log ( (1 + q )/ (1
- q ) ) ) // D (log ( (1 + r )/ (1 - r ) ) ). 



To
construct a slide rule to add velocities, set the distance of a
fraction x equal to 


log ( (1+x ) / (1-x ) ). 

Figure 5
shows a slide rule for adding velocities. 




A
Relativistic Velocity Addition Slide Rule



11. Proof by Isomorphism

 Consider again the original formula for velocity

(c + w) / (c - w) = (c + u)/(c - u) * (c + v)/(c -v).




Let u & v be the sum of velocities u and v.

Let T(x) = (c + x)/(c - x).


Then T(u & v) = T(u)*T(v)



How do we add three velocities? In the example

of the person walking with velocity u in a


train traveling with velocity v, let s be the velocity

of the earth relative to the sun. What is the 


velocity of the person relative to the sun?



 Velocities can only be added two at a time. There 

are two ways of doing this and we would hope that


they come out the same. 



 We could first find the velocity of the person

relative to the earth and then add this velocity to


 the velocity of the earth relative to the sun.

 This would give




T(s & (v & u)) = T(s) * T(v & u) = T(s) * (T(v) * T(u))



On the other hand we could first find the velocity of

the train relative to the sun and then add the


person's velocity. We then have



T((s & v) & u) = T(s & v) * T(u) = (T(s) * T(v)) * T(u).



The two values are of course the same. The reason

for this is that multiplication is associative, i. e.,


(a * b) * c = a * (b * c). We see that this causes

addition of velocities to be associative -


s & (u &v) = (s & u) &v. 



 The above argument could have been used for

any isomorphism. Thus we have the property


that isomorphisms preserve the associative 

property just we showed earlier that they preserve


the commutative property. We could have used

this property to state immediately that it does


not matter which of the two ways the velocities

are added because multiplication is associative.



 It could also have been argued that using the

velocity slide rule, it is obvious that it does not


make any difference in which order the velocities

are added. This is because the addition of distances


is both commutative and associative and any

calculation for which we can construct a slide


rule must therefore also be both commutative and 

associative.




 In the above formula for velocity addition it is 

possible to solve for w to get




u & v = (u + v)/ (1 + u*v/c2).

To show that addition of velocities is associative


we could have then solved explicitly for both

(s & (v & u)) and ((s & v) & u), but this involves


a great deal more effort.



We can also apply the above results to the parallel resistor and 

right triangle examples.




Using the notation in the section on right triangles, the

distance (x & y) that results from East and North displacements 


of x and y is given by s(x & y) = s(x) + s(y). To generalize to

three dimensions we get s(s & y & z) = s(x) + s(y) + s(z).




For combining several parallel 

resistors we get:




1/r = 1/r1 + 1/r2 + ... + 1/rn.



Boolean
Algebra

I
am going to present an example of a non-numeric isomorphism.
Unfortunately, there is no corresponding slide rule.



Although only a small portion of high school students is likely to
become computer programmers, most of them will probably be using
computers in one way or another. The distinction between program
developers and program users has been blurred by such software as
spreadsheets and
database query programs. There are thus good practical
reasons for introducing Boolean algebra in high school. The DeMorgan
rules reveal a fundamental isomorphism that facilitates teaching this
subject and makes it more interesting.



The variables in Boolean algebra can take on only two values - TRUE or
FALSE and the principal operations are AND, OR and NOT. The variables
can stand for any statement; we are concerned with whether the
combination of such statements is either true or false.



The AND, OR and NOT operators agree with what common sense would say
they should be. NOT is the simplest operator. It takes only one
variable. 


NOT X = FALSE if X is TRUE and TRUE if X is FALSE.



Because Boolean variables, unlike numerical values, take on only two
values we can completely specify the AND and OR operations with tables.



X
AND Y
    Y
    TRUE FALSE

X
TRUE TRUE FALSE
FALSE FALSE FALSE

Whenever possible, check to see if a result "makes sense". The
above table says that X AND Y is TRUE only if both X and Y are both TRUE,
in agreement with how the term AND is used in everyday use.



X
OR Y
    Y
    TRUE FALSE

X
TRUE TRUE TRUE
FALSE TRUE FALSE

The table for X OR Y says
that X OR Y is FALSE only if both X and Y are both FALSE.



One complication is that the word "or" in English can have two
different meanings; which one is being used can usually be determined
from the context of the statement. "or" can be defined as above or it
can be the same except that it is defined as FALSE when X and Y are
both TRUE. For
example, if I say "Either candidate A or candidate B
will be the next president", it is understood that this rules out the
possibility of both A and B being the next president. This type of "or"
is referred to in logic as an exclusive or (XOR) and by way of contrast
OR is sometimes referred to as
an inclusive or. In this section I will
only be dealing with the inclusive or. 



Notice that the summary of the X OR Y table is the same as the summary
of the X AND Y table with the words TRUE and FALSE interchanged. This
suggests the following isomorphism, which is one of DeMorgan's two
rules:



NOT (X AND Y) = (NOT X) OR (NOT Y)



In plain language this says that if the statement X AND Y is not TRUE
then either X is FALSE or Y is FALSE. We can formally prove the
statement by using the two above tables to show that both sides of the
equation are equal for all four combinations of values for X and Y.



To get the other of DeMorgan's rules we apply the inverse of NOT to
show the isomorphism in the other direction. NOT is its own inverse so
we get:



NOT (X OR Y) = (NOT X) AND (NOT Y)



AND and OR are isomorphic. We could in principle discard OR from our
vocabulary and just use AND, though I would not recommend this unless
you are planning a career in politics. "It will rain today or tomorrow"
would become "It is not true that it will not rain today and it will
not rain
tomorrow". There have been times, however, when I have used
DeMorgan's rules when programming to simplify statements.



The isomorphism simplifies proofs. We can use the table to show that
AND is commutative and associative. It follows immediately by
isomorphism that the same is true of OR.




From
Isomorphism to Duality

We can go further. The fact
that NOT is the transform function for both AND and OR means that we
can apply both transforms simultaneously. For example, consider the
following distributive identity between AND and OR which is analogous
to the distributive operation of multiplication
and addition:



X AND (Y OR Z) = (X AND Y) OR (X AND Z).



We can prove this statement by substituting all 8 combinations of X, Y
and Z. We should also test the reasonableness of the statement by using
an example.


"I will speak to Sarah and (I will speak to) John or Raymond." is the
same as "I will speak to Sarah and John or I will speak to Sarah and
Raymond." 



Apply NOT to both sides of the equation. Using the AND isomorphism
gives the following on the left side.



NOT(X AND (Y OR Z)) = NOT X OR NOT (Y OR Z) 



Applying the OR isomorphism gives



NOT X OR NOT (Y OR Z) = NOT X OR ((NOT Y) AND (NOT Z))



Each of the arguments has been negated and the ANDs and ORs have been
interchanged. The same happens on the right side of the equation. We get



NOT X OR ((NOT Y) AND (NOT Z)) = 

((NOT X) OR (NOT Y)) AND ((NOT X) OR NOT Z)



We can get rid of the NOTs by setting X'=NOT X, Y'=NOT Y, Z'=NOT Z, so
that what end up is the same form as we started except the ANDs and ORs
have been interchanged:



X' OR (Y' AND Z') = (X' OR Y') AND (X' OR Z')



For every identity a new one can be created by interchanging AND and
OR. 



The relationship between AND and OR is referred to as a duality. In
this case we have a duality between operators. There are different
types of duality but the general principle is that a dualism exists
when true statements can be generated from other true statements by
interchanging two
terms.

Addendum - Slide Rule
Scales for Raising a Number to a Power

Since, in general, xy
is not equal to yx,
there can not be slide rule scales for raising a number to a power if
we require both scales to be the same. However, if we remove the
requirement for isomorphism we can use two different scales to achieve
our purpose. We can create the slide rule
scales if we can find two
different functions T and U that satisfy:




T(xy)
= T(x) + U(y)



We then create the slide rule having T(x) as the bottom scale and U(y)
as the top scale. Standard slide rules do this by having T(x) =
log(log(x)) and U(y) = log(y).

To see why this works, find
log(log(xy)):

log(log(xy))
= log(y*log(x)) = log(y) + log(log(x)).

HOME

https://mathed.org/slide_files/SquareSlideRule.html
https://mathed.org/slide_files/ParRestSlideRule.html
https://mathed.org/slide_files/RelVelSlideRule.html
https://mathed.org/Home.html

